

Bestimmung Cyanid und Silber in Galvanikbädern

Beschreibung

Galvanikbäder zum Versilbern enthalten neben Silber meist einen großen Überschuss an Cyaniden. Das Silber liegt als Dicyanoargentat [Ag(CN)₂]- vor. Freies Cyanid und Silber lassen sich im Alkalischen mit Silbernitrat auf 2 Equivalenzpunkte titrieren. Dabei reagiert das freie Cyanid zunächst zu [Ag(CN)₂]-. Bei weiterer Silbernitrat-Zugabe bildet sich schwer lösliches AgCN. Die Lösung wird nach dem 1. EQ trüb.

$$2 CN^- + Ag^+ \rightarrow [Ag(CN)_2]^-$$

$$[Ag(CN)_2]^- + Ag^+ \rightarrow 2 AgCN$$

Geräte

Titrator	TL 7000, TL 7750 oder TL 7800	
Elektrode	AgS 62 RG	
Kabel	L 1 A	
Rührer	Magnetrührer TM 235 oder ähnliche	
Laborgeräte	Bechergläser 150 mL	
	Magnetrührstab 30 mm	

Reagenzien

1	Silbernitrat – Lösung 0,1 mol/L	
2	Kaliumhydroxid oder Natriumhydroxid 3 mol/L	
3	Destilliertes Wasser	
	Alle Reagenzien sollten mindestens analysenrein sein	

Durchführung der Titration

Reagenzien

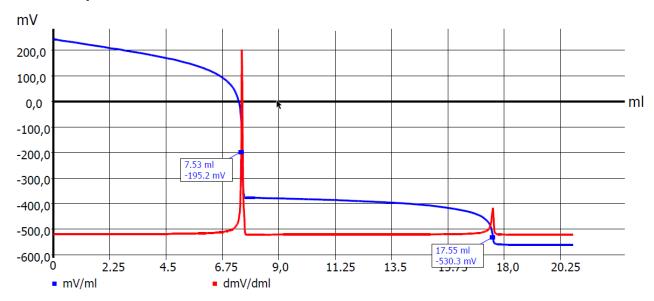
AgNO₃ - Lösung 0,1 mol/L

AgNO₃ – Lösung 0,1 mol/L ist als fertige Maßlösung erhältlich. Die Titerbestimmung der AgNO₃ - Lösung erfolgt wie in der Applikationsschrift "Titerbestimmung von AgNO₃" beschrieben.

Reinigung der Elektrode

Die Elektrode wird mit destilliertem Wasser gereinigt. Für die Lagerung der AgS 62 RG eignet sich dest. Wasser.

Probenvorbereitung


Die Probe wird in ein 150 mL Becherglas pipettiert, mit dest. Wasser auf ca. 80mL aufgefüllt und mit 2 mL KOH oder NaOH 3 mol/L alkalisch gestellt. Der pH-Wert sollte bei ca. pH 10 – 12 liegen. Anschließend wird mit AgNO₃ – Lösung 0,1 mol/L auf 2 EQs titriert.

Die benötigte Probenmenge kann nach dieser Faustformel abgeschätzt werden:

$$V(mL) = \frac{1000 * Titer \left[\frac{mol}{L}\right]}{erwarteter KCN - Gehalt \left[g/L\right]}$$

xylem | Titration 117 AN 2

Titrationsparameter

Standardmethode			
Methodentyp	Automatische Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit / Drift	Benutzerdefiniert	Min. Wartezeit	3 s
		Max. Wartezeit	15 s
		Messzeit	3 s
		Drift	10 mV/min
Startwartezeit	5 s		
Dynamik	mittel	Max. Schrittweite	1.0 mL
		Steigung bei max. ml	10
		Min. Schrittweite	0.02 mL
		Steigung bei min. ml	120
Dämpfung	keine	Titrationsrichtung	fallend
Vortitration	aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(2)	Steigungswert	300
Max. Titrationsvolumen	20 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

xylem | Titration 117 AN 3

Berechnung:

Freies Cyanid:

$$KCN[g/L] = \frac{(EQ1 - B) * T * M * F1}{V * F2}$$

В	0	Blindwert	
EQ1		Verbrauch des Titrationsmittels am ersten EQ	
Т	WA	Exakte Konzentration des Titrationsmittels	
М	65,12	Molekulargewicht KCN	
V	man	Probenvolumen [mL]	
F1	2	Umrechnungsfaktor 1	
F2	1	Umrechnungsfaktor 2	

Silber:

$$Ag \left[g/L \right] = \frac{\left(EQ2 - 2*EQ1 \right)*T*M*F3}{V}$$

EQ1		Verbrauch des Titrationsmittels am ersten EQ	
EQ2	Verbrauch des Titrationsmittels am zweiten EQ		
Т	WA	Exakte Konzentration des Titrationsmittels	
V	man	Probenvolumen [mL]	
F3	107,87	Molekulargewicht Ag	

